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Using a partial-wave method for sound–mean-flow scattering problems
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We present a semianalytical method, based on a partial-wave expansion and valid in the short wavelength
limit for small Mach number flows, to analyze sound–vortical-flow interactions. It is more powerful than
ray-tracing methods because it gives both amplitude and phase of the sound wave, and because it is less
restrictive on the smallness of the wavelength. In contrast with the Born approximation approach, this method
allows the computation of the sound field in the whole interaction domain~including the near field!, and
preserves energy conservation. Vortical flows with finite circulation are amenable to our analysis, which gives
a satisfactory description of wave front dislocation by vorticity, in good agreement with direct numerical
simulations. We extend previous versions of this method to the case of smooth vorticity profiles which are
observed in aeroacoustics experiments.
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I. INTRODUCTION

Sound–mean-flow interactions play a prominent part
many physical phenomena, dwelling from atmospheric a
oceanographic context@1# to laboratory flow instabilities@2#.
It is still an open question to know how sound propagates
turbulent media, and how its characteristics are influenced
the mean flow. We will focus our attention in this paper
the short wavelength limit, when the sound wavelengthl is
smaller than the typical mean-flow scaleL. In atmospheric
and oceanographic context@1,3,4#, this approximation is of-
ten well verified. This limit is also useful to analyze som
aspects of sound propagation in turbulent media in labo
tory experiments@5–7#.

In the very small wavelength limit, the acoustical intera
tion can be interpreted using the ray-tracing method@4,8#.
Starting with a power law expansion of the wave amplitu
in the wavelength, the zeroth order~geometric limit! leads to
two coupled differential equations involving the mean-flo

specifications, the wave vector@ ikW (t)i52p/l(t)#, and the
ray pathrW(t) in terms oft, the acoustical ray parameter@9#.
The solution of these sets of equations gives a qualita
description of the mean-flow effects on the geometry of
rays @10–13#. A more quantitative approach requires t
acoustical field values. The first-order terms of the wa
length power law expansion lead to the conservation of
acoustical energy along a ray@9,14#. Thus, one can easily
compute the field properties along a ray, and then estim
the spatial field repartition@15#. However, this method is no
more valid in presence of caustics, when two or more r
cross: the physical requirement of a finite acoustical ene
leads to a more complicated way of computation@14#. Nev-
ertheless, the geometric limit remains a qualitative but
evant method of analysis@16,17# in many problems involv-
ing sound-flow interactions.

An alternative way of solving this problem is to start wi
the linearized equations in the sound variables. One can
1063-651X/2003/67~3!/036604~17!/$20.00 67 0366
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write a wave equation for the sound wave@18# with source
terms expressing the coupling of sound with mean flow a
solve the problem in the far-field limit in the first Born ap
proximation @19,20#. This treatment, valid for small Mach
numberM!l/L, is useful in the large wavelength limit. A
the wavelength decreases,ML/l must remain small to en
sure the validity of the Born approximation. Thus, the sh
wavelength limit cannot be easily analyzed with this meth

We will use in this paper another way of investigation: w
linearize the basic equations and take the short wavele
limit. In this limit, if c0 (cs) is any quantity related to the
mean flow~the sound wave!, we have

csi¹
W c0i;

csc0

L
!c0i¹W csi;kcsc0 . ~1!

Then, at first order beyond the geometric limit, the sou
propagation can be expressed by the modified wave equa

S ]

]t
1vW 0•¹W D 2

ps2c2Dps50, ~2!

wherevW 0 is the mean-flow velocity,c is the speed of sound
and ps is the sound pressure perturbation. Then, an ang
Fourier transform is applied to Eq.~2! and allows the com-
plete computation of the sound field. Each Fourier mode
called apartial wave, and the complete acoustic field is th
superposition~interference pattern! of all those partial waves
This method was already used for sound–mean-flow inte
tion problems, to study sound scattering~introducing, in
analogy with scattering problems in quantum mechanics,
concept of phase shifts! @21,22#, spiral waves phenomen
@23#, and sound absorption by a vortex@24#.

The partial-wave method that we propose here is an a
native way to ray-tracing methods for sound–mean-fl
scattering problem in the short wavelength limit: it allow
the full computation of the acoustic fields~amplitude and
phase! in the whole domain of interaction~both the far field
©2003 The American Physical Society04-1
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and the near field!. It will be applied to the scattering of a
sound wave~wavelengthl) by a vortical stationary mean
flow ~typical length scaleL) in the small wavelength limit
l!L, but in our calculations this limit is much less restri
tive than in geometrical acoustics approaches.

The paper is organized as follows: in the first part,
derive a modified wave equation for the interaction of
sound wave with a mean stationary flow. In the second p
we solve this equation in the bidimensional case using
partial-wave method and we formally compute the f
acoustical field. In the last part, we present examples to c
acterize and illustrate the method.

II. THE WAVE EQUATION IN THE SHORT
WAVELENGTH LIMIT

Let us consider an acoustic wave~density variationrs ,
fluid velocity vW s , and wave celerityc5Aps /rs) moving in
an isentropic mean flow (r0 , vW 0). The mean flow is assume
to be incompressible, which means a small Mach num
M!1, and the acoustic wave is assumed to be a small
turbation of the mean flow. Moreover, the sound frequenc
assumed to be larger than the typical frequency of the m
flow, which physically means that the flow is frozen durin
its interaction with the sound wave.

Starting with the decomposition of the physical fieldsr

5r01rs , vW 5vW 01vW s , and p5p01ps , we can write the
mass and momentum conservation equations for the m
flow. To the leading order in the small quantitiesrs /r0 ,
vs /v0, andps /p0, the sound wave fields are governed by

Drs

Dt
1div ~r0vW s!50, ~3!

r0

DvW s

Dt
1r0~vW s•gradW !vW 01rs~vW 0•gradW !vW 052c2gradW rs.

~4!

We have introduced the particle derivative with respect

vW 0:

D

Dt
[

]

]t
1vW 0•gradW . ~5!

From Eqs.~3! and~4!, we can write a wave equation with
source term. This source term is at least of orderM/b2, with
b5k L52p L/l. In the short wavelength limitl!L, which
meansb@1, and to the first order inM!1, this source
term is negligible and the wave equation becomes@23#

F D2

Dt2
2c0

2DGrs50 ~6!

with c0 the sound celerity in the medium at rest@c.c0
1O(M 2)#. Then, one gets easily Eq.~2! for the sound pres-
sure. In the following, we will focus on the density solutio
03660
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of Eq. ~6!. Equation~6! was also derived by Obukhov for th
sound velocity potential in his studies of sound scattering
turbulent flows@25#.

It should be mentioned here that the wave equation m
be derived first and only then the short wavelength limit
taken. Taking the short wavelength limit of Eqs.~3! and ~4!
and writing a wave equation can lead to a misleading ph
cal analysis. When deriving Eq.~6!, one must take the tem
poral derivative of Eq.~3! and the spatial derivative of Eq
~4!. Then, both the wave vectork and the sound frequenc
appear and can modify the order of magnitude of the sou
terms.

Equation~6!, valid in the short wavelength limit for smal
Mach number flows, shows that the interaction betwe
sound and flows is twofold. First, the sound wave is loca
advected by the mean flow, which is a purely kinematic
fect: for a uniform mean flow velocity, Eq.~6! corresponds to
a Galilean transformation of the wave equation from t
mean-flow reference to the laboratory reference. Second,
~6! is the analogous, in a compact form due to the geome
cal approximations, of the wave equation derived in t
sound–mean-flow interaction studies@18,26# as mentioned
above. Then, the scattering by the mean-flow velocity gra
ents is also considered in Eq.~6!.

It should be noticed that acoustical problems and surf
wave problems in the shallow water approximation are si
lar @27# because both type of waves are nondispersive. Th
it is not surprising that Eq.~6! is stricly analogous to the
wave equation~2.7! derived by Costeet al. @28# to describe
the interaction between a short wavelength surface wave
a vortical flow in the shallow water approximation.

III. PARTIAL-WAVE METHOD IN THE SOUND
SCATTERING PROBLEM

The partial-wave~hereafter PW! method is generally used
for scattering problems both in electromagnetism@29# and
quantum mechanics@30# when the scatterers have a spheric
or a cylindrical symmetry. In a three-dimensional proble
introducing the spherical harmonic functions allows to co
pute the scattering field~or the wave function! in terms of
PW, depending only on the radiusr. In the two-dimensional
case, using the polar coordinates, the PW method consis
an angular Fourier transform and also leads to PW that o
depends onr.

In the context of sound scattering by a vortical flow, w
will consider an axisymmetric bidimensional single vortex
spatial extensionLm : its vorticity vanishes forr>Lm . Its
velocity only depends on the radiusr: vW 0(rW)5U(r ) û, where
û is the unit orthoradial vector of the polar coordinates. A
suming a small Mach numberM5v0 /c0!1 and a short
wavelength with respect to the flow lengthLm , b5kLm
52p Lm /l@1, Eq.~6! describes the interaction of the vo
tical flow with the sound wave. Then, we use the PW meth
to compute the sound fields. In this case, the PW met
simply consists in an angular Fourier transform, as poin
out before.
4-2
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A. Partial-wave equation

Since the flow is axisymmetric, Eq.~5! reads

D

Dt
5

]

]t
1

U~r !

r

]

]u
~7!

and Eq.~6! becomes

F ]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]u2
2

1

c0
2 S ]

]t
1

U~r !

r

]

]u D 2Grs50. ~8!

Introducing a partial-wave development for a monoch
matic sound wave of pulsation 2pn,

rs~rW,t !

rs0
5ReF S (

n52`

1`

rn~r !einuD e2 i2pntG
5ReF (

n52`

1`

rn~r !ei (nu22pnt)G , ~9!

(Re@z# is the real part of the complex numberz), Eq. ~8!
leads, at orderM, to an ordinary differential equation fo
each partial wavern(r ),

rn91
rn8

r
1Fk222

n k U~r !

c0 r
2

n2

r 2Grn50 ~10!

with k52pn/c0, the prime denoting a derivation with re
spect tor.

The complete solution is obtained when Eq.~10! is solved
for each partial wave, and the full sound wave density va
tion rs(rW,t) is constructed using Eq.~9!.

B. Partial-wave solution

We consider mean flows of typical vortical sizeLm . We
describe such a flow with a piecewise vorticity profile:

V5V in~r !, r<Li ,

V5V inter~r !, Li<r<Lm, ~11!

V50, r>Lm.

The corresponding velocity can then be expressed in
form

U~r !5Uin~r !, r<Li ,

U~r !5Uinter~r !, Li<r<Lm, ~12!

U~r !5
G

2pr
, r>Lm,

G being the circulation of the mean flow. We impose t
continuity of the fluid velocity@and of the fluid pressure~or
density!# at the boundaries between the three doma
Uin(Li)5Uinter(Li) and Uinter(Lm)5G/(2pLm). This
03660
-

-
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s:

structure of mean flows allows us to modelize a large num
of physical situations involving axisymmetric mean flow
@31–33#.

1. Outer solution

For r>Lm , injecting the velocity field~12! in Eq. ~10!,
we get

rn91
rn8

r
1Fk22

m2

r 2 Grn50, ~13!

wherem5An212 n a anda5kG/(2p c0). For a nonzero-
circulation vortex (aÞ0), the indexm may be real or even
complex if 0.n.22a. In either cases, the outer solutio
can be expressed in terms of Bessel and Hankel functio

rn
out~r !5dn

Jm~kr !

Jm~b!
1en

Hm
1 ~kr !

Hm
1 ~b!

, ~14!

where dn and en are two numerical constants to be dete
mined by the boundary conditions.

In a seminal paper, Berryet al. @34# have shown the close
analogy between the crossing of a potential vector of fin
circulation by a charged particle in quantum mechanics
the interaction between a surface wave and a vortical flow
an ordinary fluid. The vortex has the same effect on the s
face waves as the vector potential on the wave function:
finite circulation implies a phase shift, characterized by
parametera, in either the wave function or the surface wav
and the wave fronts display a dislocation~the so-called
Aharonov-Bohm effect in quantum mechanics@35#!. This
dislocated wave is a non perturbative interaction term~the
dislocation amplitude is the same as that of the wave!, and
persists arbitrarily far from the interaction region, which
not the case for the scattered wave~with amplitude decreas
ing as 1/Ar in two dimensions!.

The wave front dislocation is a phase shift that cannot
directly observed in quantum mechanics@36#, whereas in the
acoustical or surface waves cases, both the phase and a
tude of the waves can be measured: the Berry’s analogy
experimentally confirmed by Vivancoet al. @37# in the sur-
face wave case and in the acoustical case by Rouxet al. @31#
using the time reversal mirror method and by Labbe´ and
Pinton @32# with direct ultrasonic measurements.

The dislocation parametera is zero when the vortex ha
no circulation. It leads to Bessel functions of integer order
solution~14!: there is no Aharonov-Bohm effect in this cas
Thus, in classical wave scattering experiments, a disloca
wave front can be interpreted as the signature of a vort
flow with a global circulation@37,38#.

2. Inner solution

In the vortex region, we must solve

rn91
rn8

r
1Fk222

n k Uinter~r !

c0 r
2

n2

r 2Grn50 ~15!
4-3
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for Li<r<Lm and

rn91
rn8

r
1Fk222

n k Uin~r !

c0 r
2

n2

r 2Grn50 ~16!

for r<Li .
In the regionr<Li , Uin /r is an angular velocity: it mus

remain finite whenr goes to zero. Thus, in this limit
Uin /r !n2/r 2 and Eq.~16! always becomes a usual Bess
equation: its solution is a linear combination of Bessel a
Neumann functionsJ andN. Whenr goes to zero, the Neu
mann function diverges, and so does one of the solution
Eq. ~16!. This latter must consequently be excluded, in or
to get a finite sound field everywhere. The inner solution c
thus be expressed in a formal way in both regions, using a
of only three numerical constantsan , bn , andcn :

rn
in~r !5an

Fn
in~r !

Fn
in~Li !

, ~17!

whereFn
in(r ) is that solution of Eq.~16! which is bounded at

the origin r 50, and

rn
inter~r !5bn

Fn
inter~r !

Fn
inter~Lm!

1cn

Gn
inter~r !

Gn
inter~Lm!

. ~18!
03660
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The explicit form of the three functionsFn
in , Fn

inter , and
Gn

inter obviously depends on the details of the velocity pr
file.

3. Matching of the three solutions

To achieve the determination of the sound wave, we h
to compute the five integration constantsan , bn , cn , dn ,
and en . They are fixed by requiring the continuity of bot
the density variation and the fluid velocity for the sou
wave at the matching locationsr 5Li and r 5Lm . This im-
plies the continuity ofrn for each PW, and from Eq.~4! the
velocity continuity leads to that ofrn8 . This provides a set of
four equations.

The fifth equation comes from a topological condition
the sound field at infinity: as pointed out before, far from t
mean flow,kr→`, the sound wave should be the sum@39#
of a scattered wave, decreasing like 1/Akr, and a dislocated
wave of constant amplitude@28,34#. This condition reads
@34#

dn5~2 i !mJm~b! ~19!

and the continuity conditions lead to the nonhomogene
system
1
1 2

Fn
inter~Li !

Fn
inter~Lm!

2
Gn

inter~Li !

Gn
inter~Lm!

0

~Fn
in!8~Li !

Fn
in~Li !

2
~Fn

inter!8~Li !

Fn
inter~Lm!

2
~Gn

inter!8~Li !

Gn
inter~Lm!

0

0 1 1 21

0
~Fn

inter!8~Lm!

Fn
inter~Lm!

~Gn
inter!8~Lm!

Gn
inter~Lm!

2
Hm8

1~b!

Hm
1 ~b!

2 S an

bn

cn

en

D 5S 0

0

~2 i !mJm~b!

~2 i !mJm8 ~b!

D . ~20!
g
f

is
cat-
Then, the complete solutionrs is

rs~r ,u,t !

rs0
5ReF (

n52`

`

an

Fn
in~r !

Fn
in~Li !

ei (nu22pnt)G , r<Li ,

~21!

rs~r ,u,t !

rs0
5ReF (

n52`

` S bn

Fn
inter~r !

Fn
inter~Lm!

1cn

Gn
inter~r !

Gn
inter~Lm!

D ei (nu22pnt)G , Li<r<Lm ,

~22!
rs~r ,u,t !

rs0
5ReF (

n52`

` S ~2 i !mJm~kr !

1en

Hm
1 ~kr !

Hm
1 ~b!

D ei (nu22pnt)G , r>Lm , ~23!

where the constantsan , bn , cn , and en are given by the
solution of Eq.~20!. All our PW calculations are done usin
MATHEMATICA . The symbolic computation capabilities o
this software are useful to calculate the constants.

In the limit a→0, m5unu and the outside sound wave
the exact sum of the incident plane wave and a wave s
tered by a cylindrical distribution@40#. It should be pointed
4-4
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out that we take here into account the inner structure of
distribution @see Eq.~20!#.

4. Scattering amplitude

Assuming a linear incident plane wave of wave numbek,
wavelengthl52p/k, celerity c, frequency n5l/c, and
density amplituder0i ,

r i5r0i Re@ei (kW•rW22pnt)#, ~24!

two quantities of major importance for sound scattering st
ies can be defined@40#: the scattered sound waverscat and
the scattered amplitudef (u). The former is deduced fromrs
andr i :

rs[r i1rscat ~25!

and the latter, only defined forr @2p L2/l ~far-field ap-
proximation!, is deduced fromrscat andr i by

rscat5ReFr0i f ~u!e2 i (2pnt)
eikr

Ar
G ~26!

in two dimensions. The 1/Ar factor in Eq.~26! comes from
the energy conservation in a two-dimensional problem.f (u)
characterizes the angular structure of the sound wave re
ing from the scattering process. It is directly related to
scattering cross section:

sscat5E
0

2p

u f ~u!u2du, ~27!

an important parameter to analyze the scattering efficien
The wave front dislocation is a nonperturbative effect d

to the finite circulation of the vortical flow at infinity. Henc
for a compact mean flow of typical sizeL ~no velocity cir-
culation for r>L), there is no dislocated wave, and the i
cident plane wave is the exact solution of the scattering pr
lem far from the vortex. In the context of our calculation
a50, m(n,a)5unu wheren is an integer, and Eq.~19! leads
to the classical decomposition of plane waves in series
Bessel functions~see Ref.@41#, formula ~8.511! and notice
that this choice implies to locate the forward direction inu
5p):

r i

r0i
5Re@ei (kW•rW22pnt)#

5ReFe2 i (2pnt) (
n52`

`

~2 i !nei n uJn~kr !G . ~28!

Comparing this last expression with the expression of
outer solution~23!, we conclude that the scattered waverscat
corresponds to the second term of the partial-wave solut

rscat~r ,u,t !

r0i
5ReF (

n52`

`

en

Hm
1 ~kr !

Hm
1 ~b!

ei (nu22pnt)G . ~29!
03660
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Far from the vortex core,kr@1, we can expand inkr the
Hankel functionsHm

1 :

Hm
1 ~kr !.~2 i !mA 2

pkr
eikr e2 ip/4. ~30!

We recover theeikr /Ar radial evolution, and can express th
scattering amplitudef (u) as

f ~u!5A 2

pk (
n52`

`

en

ei (nu2p/42mp/2)

Hm
1 ~b!

. ~31!

The scattering cross section can then be formally compu
in terms of the partial wave coefficientsen :

sscat5
4

k (
n52`

` U en

Hm
1 ~b!

U2

. ~32!

5. Conservation of the acoustical energy

Another way to computesscat is by using the two-
dimensionnal optical theorem@29,42#

sscat1sabs5s t5A8p

k
Im@ f ~u5p! e2 ip/4# ~33!

(u5p locates the forward direction, see Eq.~28! and Im(z)
is the imaginary part of the complex numberz).

It simply expresses the energy conservation during
scattering process. As we do not consider any source of
sorption,sabs50 and we expect

sscat5s t . ~34!

From Eqs.~31! and~32!, it is a very hard task to demonstra
this equality because of the cumbersome expression of
coefficientsen . Nevertheless, the quantum problem forma
analogous to our acoustical problem is the interaction
tween a particle and an axisymmetrical potentialV(r ): start-
ing with the Schro¨dinger equation@30#

DC1
2m

\2
@E2V~r !#C50, ~35!

one can introduce a partial-wave development of the w
function C,

C~rW !5 (
n52`

1`

C l~r !eil u. ~36!

Then, each partial waveC l satisfies

C l91
C l8

r
1Fk222

m V~r !

\2
2

l 2

r 2GC l50. ~37!

Equation~37! is similar to Eq.~10!. Moreover, if we con-
sider a compact mean flowU(r ) in acoustics, its quantum
analog is an interaction potentialV(r ) which decays faster
than 1/r @43#. In the larger region~corresponding to the fa
4-5
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R. BERTHET AND C. COSTE PHYSICAL REVIEW E67, 036604 ~2003!
field in acoustics and to the large distance scattering in qu
tum mechanics!, both equations have the same asympto
limits

X91k2X50 @X~r ![Arrn~r !orArC l~r !#. ~38!

We use this quantum mechanics analogy to solve our s
tering problem: far from the scattering region@43#,

rn}A 2

pkr
cos~kr2np/21dn!, ~39!

where the phase shiftdn depends on the velocity fieldU(r )
@for U[0, dn[0 and one gets the asymptotic expansion
the partial waves describing a monochromatic plane wa
Eq. ~42!#. Then the complete sound wavers reads

rs~r ,u,t !

r0i
5A 2

pkr
ReF (

n52`

`

Bncos~kr2np/2

1dn!ei (nu22pnt)G , ~40!

whereBn are numerical constants. On the other hand, fr
Eqs.~24!–~26!, rs can be expressed as

rs~r ,u,t !

r0i
5ReFei (kW•rW22pnt)1

f ~u!

Ar
ei (kr22pnt)G ~41!

and the incident plane wave can be expanded into@see Eq.
~28! and Ref.@41#, formula ~8.451!#

r i

r0i
5Re@ei (kW•rW22pnt)#

5A 2

pkr
ReFe2 i (2pnt) (

n52`

`

~2 i !n

3ei n ucos~kr2np/22p/4!G . ~42!

The constantsBn are chosen in such a way that the scatte
wave rs2r i represents an outgoing wave, depending o
on e1 ikr . Using Eqs.~40!–~42! and equating to 0 the coef
ficient of e2 ikr lead to

Bn5ei (dn2np/21p/4) ~43!

and the scattering amplitude can be recast into

f ~u!5A 1

2pk (
n52`

`

ei n (u2p)e2 ip/4@ei (2dn1p/2)21#.

~44!

Similar expressions were derived for the scattering of so
by nonzero-circulation mean flows by Fetter in the lar
wavelength limitl@L @21#, and by Reinschke@22#. How-
ever, these authors did not discuss the validity of the opt
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theorem because they considered problems in which
mean-flow velocity field decays too slowly.

From Eq.~31!, we get a complete analogy between o
partial-wave method and the phase-shift method:

en5
Hm

1 ~b!ei (mp/2)

2
e2 i np@ei (2dn1p/2)21#. ~45!

From Eq.~44!, we can compute the scattering cross sect
sscat,

sscat5
4

k (
n52`

`

sin2~dn1p/4!, ~46!

and the forward scattering amplitude

f ~u5p!5e2 ip/4A 1

2pk (
n52`

`

@ei (2dn1p/2)21#. ~47!

Thus, we prove the conservation of the acoustical ene
~33! and findsscat5s t .

Therefore, the partial-wave analysis of Eq.~6!, valid at
the first Mach order in the short wavelength, includes
conservation of the acoustical energy during the scatte
process. If the interaction is analyzed in the first Born a
proximation, it is well known that the optical theorem cann
be satisfied:f }M whereass}M 2. The second Born ap
proximation @30,44# or an asymptotical treatment@45,46#
must be considered to ensure energy conservation.

Energy conservation is satisfied here because we s
exactly Eq.~6!, taking into account the full interaction phe
nomena, including both multiscattering events and geome
cal coupling. The consequence is that our calculation fulfi
the optical theorem for a compact mean flow~quickly de-
creasing at infinity!, and that it describes properly the no
pertubative effect of wave front dislocation for a noncomp
mean flow. This is clearly not the case in the first Born a
proximation or the standard ray-tracing methods.

IV. APPLICATION TO AEROACOUSTIC PROBLEMS

The PW method has been employed to solve the diffr
tion of surface waves by a single vortex@37#. In this context,
the experimental vorticity distribution is very accurately d
scribed by a vortex core in solid rotation, and an outer par
the flow with a 1/r decreasing orthoradial velocity~see Ap-
pendix A!. A very good agreement was found between e
perimental results and the PW method predictions@37,47#.
Formally, the vorticity is a step function of the distance to t
vortex center. In aeroacoustics, however, the solid rotatio
a very poor approximation of the effective velocity field
the inner part of the vortex@32#. We thus show, in these
examples, how to generalize the previous calculations@28# to
smooth~polynomial! vorticity distributions.

Another difficulty with the PW method is that the bas
equation~6! is only approximate, valid whenb@1 whereb
is the product of the acoustic wave number by a characte
tic length scale of the flow, typically the size of the vortici
distribution. But the analysis does not give any numeri
4-6
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USING A PARTIAL-WAVE METHOD FOR SOUND–MEAN- . . . PHYSICAL REVIEW E 67, 036604 ~2003!
estimate of the minimum admissible value ofb. In order to
get more information, we study the acoustic scattering b
vorticity distribution of zero circulation outside a radiusLm .
In this case, the scattered wave may be calculated in the B
approximation~see Appendix B!, which is valid if Mb!1
whereM is the flow Mach number@48,49#. It is thus pos-
sible to consider low Mach number flows for which the Bo
approximation is legitimate, and to compare the Born sc
tering amplitude with PW calculations. Then, we get nume
cal estimates of the value ofb that gives good numerica
agreement between the two approaches.

A. Range of validity of the partial-wave method

To analyze the range of validity of our method, we wa
to make comparisons with usual calculations in the first B
approximation. To this end, we use two zero-circulati
flows, because Born approximation breaks down in the c
of flows with circulation @19,50,51#. Setting bi the vortex
size andai5xibi (xi,1), the first one is

U1~r !5
v1

2
r , 0<r<a1 ,

U1~r !5
v1x1

2

2~x1
221!

S r 2
b1

2

r D , a1<r<b1 , ~48!

U1~r !50, b1,r .

V1~r !5v1 , 0<r<a1 ,

V1~r !5
v1x1

2

x1
221

, a1<r<b1 , ~49!

V1~r !50, b1,r .

The velocity field is continuous atr 5a1, but the vorticity
is not. This is corrected in the second case,

U2~r !5
v2

2
r S 12

r 2

x2
2b2

2~22x2
2! D , 0<r<a2 ,

U2~r !5
v2x2

2

2~22x2
2!

r S b2
2

r 2 21D , a2<r<b2 , ~50!

U2~r !50, b2,r .

V2~r !5v2S 12
2r 2

x2
2b2

2~22x2
2!
D , 0<r<a2 ,

V2~r !52v2

x2
2

22x2
2

, a2<r<b2 , ~51!

V2~r !50, b2,r .
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This second velocity profile is thus smooth, which is in pri
ciple a more favorable situation since the velocity gradie
are lower.

The analytical expressions of the velocity fields are ch
sen to make the PW calculations easier. In order to facilit
the comparison, we impose the same flow sizeb15Lm5b2
and we determine the value of the parameterv2 (v1 fixes
the velocity scale! by the following physical requirement: w
require for the two flows the same maximal velocity, whi
means the same Mach number, and that this maximum
locity occurs at the same radiusr 5L* .

Straightforward algebra leads to

a15L* , ~52!

a25b2S 12A123
L* 2

b2
2 D 1/2

~53!

v25
3v1

2
. ~54!

In the following, we compare the scattering amplitudesf de-
fined by Eq.~26!, computed using either the first Born ap
proximation applied directly on Eq.~6! or the PW solution,
Eq. ~31!.

1. Partial-wave computations

With the first vortical flowU1, Eqs. ~15! and ~16! are
Bessel equations, with solutions

Fn
in~r !5Junu~Akkn

0r !, Fn
inter~r !5Jp~Akkn

1r !,

Gn
inter~r !5Np~Akkn

1r !, ~55!

with

kn
05k2nv1 /c0 , kn

15k2
n

c0

v1x1
2

x1
221

,

p25n22
nk

c0

v1x1
2Lm

2

x1
221

. ~56!

In the region 0<r ,a1, we have kept the Bessel function o
positive index only, since it is the only solution of Bess
equation which is finite forr 50.

If c0k/v1 is an integern0 , kn
0 vanishes forn5n0. In this

special case, the inner solution can be found by assum
Fn0

in (r )}r p. This leads top56n0 and we only keep the

solutionp5n0 to ensure a bounded solution at the origin

Fn0

in ~r !5r n0. ~57!

If kn
1 vanishes for somen5n1, the intermediate solution ca

also be found}r p. This leads top56n1 and the interme-
diate solution becomes, for this particular value ofn,

Fn1

inter~r !5r n1, Gn1

inter~r !5r 2n1. ~58!
4-7
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For the second vortical flowU2, Eq. ~15! is still a Bessel
equation with solutions

Fn
inter~r !5Jp~Akkn

2r !, Gn
inter~r !5Np~Akkn

2r ! ~59!

with

kn
25k1

n

c0

v2x2
2

22x2
2

, p25n21
2nkLm

2

c0

v2x2
2

22x2
2

. ~60!

Again, if kn
2 vanishes for somen5n2, the intermediate so

lution becomes

Fn2

inter~r !5r n2, Gn2

inter~r !5r 2n2. ~61!

We have chosen the vortical flowU2 in order that Eq.~16!
becomes a solvable equation. Bose@52# has given a change
of variable that links it to the Wittacker equation@see Ref.
@41#, formula ~9.220.1!#, and its solutions are expressed
terms of confluent hypergeometric functions1F1 ~also called
degenerate hypergeometric functions; see Ref.@41#, Sec.
9.21!:

Fn
in~r !5

@c~r /a2!2#m

A2
exp@2c~r /a2!2/2#1F1„1/21m2l,1

12m,c~r /a2!2
… ~62!

with

c5a2
2A nkv2

coa2
2~22x2

2!
, m5

unu
2

, l5
a2

2

4c S k22
nkv2

c0
D .

~63!

As before, we have kept the only solution that is finite ar
50.

If c0k/v2 is an integern3 , l vanishes forn5n3 and Eq.
~16! becomes a Bessel equation. Nevertheless, the inne
lution can still be expressed in terms of confluent hyperg
metric functions, using the relation@52#

Jm~z!5
1

G~m11! S z

2D m

exp~2 iz!1F1~1/21m,112m,2iz!.

~64!

For the particular valuen50, c[0 andm[0, and the so-
lution ~62! are no longer valid. In this case, Eq.~16! becomes
a Bessel equation and the inner solution, finite atr 50, is

F0
in~r !5J0~kr !. ~65!

Then the scattering amplitude~31!, which requires the com
putation of the constantsen , can be expressed in both cas
by injecting the particular functions~55! or ~59! and ~62! in
the general system~20!.

2. Born approximation

From Appendix B, since we consider only axisymmet
vortical flows, we need to compute
03660
o-
-

Ṽ~qW !52pE
0

`

V~r !J0~qr !rdr . ~66!

Injecting the vorticity fields~49! and ~51!, we calculate the
two Fourier transforms

Ṽ1~qW !5v1

2p

q S a1J1~qa1!1
x1

2

~x1
221!

3@b1J1~qb1!2a1J1~qa1!# D ~67!

and

Ṽ2~qW !5v2

2p

q S Fa2J1~qa2!2
12

~22x2
2!q

@2J2~qa2!

2qa2J3~qa2!#G2
x2

2

22x2
2 @b2J1~qb2!

2a2J1~qa2!# D , ~68!

and then compute the scattering amplitude with the help
relation ~B1!.

3. Estimation of the range of validity

For a mean flow of sizeLm , b52pLm /l is the control
parameter of the PW method. By construction, both flo
correspond to the same value ofb. For each value ofb, and
each flow, we compute the scattering amplitude from the
method f PW(u) and from the first Born approximation
f B(u). Then, we compute the scattering cross sectionssscat

PW

from Eq. ~32! andsscat
B from Eq. ~27! and analyze the erro

between the two methods with the error parameter

z5
2~sscat

PW 2sscat
B !

sscat
PW 1sscat

B
. ~69!

For the Born approximation to be valid, the flow must satis
Mb52pMLm /l!1. Thus, we chooseM51024 to en-
sure that this inequality is satisfied for large values ofb.

Figure 1 shows the evolution of the errorz for the two
flows. Obviously,z decreases asb increases. Moreover, th
error values depend very slightly on the flow shape and on
smoothness. From a more quantitative point of view, the P
method remains valid forb>10 (z<10%). For very accu-
rate computations, one must chooseb>20 to ensurez
<1%.

B. Examples

It is obvious that analytical solutions of Eqs.~15! and~16!
are obtainable with few particular mean-flow velocity fiel
only. In the simplest case, analytical solutions can be
pressed in terms of Bessel functions ifU}r or U}1/r ~see
4-8
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USING A PARTIAL-WAVE METHOD FOR SOUND–MEAN- . . . PHYSICAL REVIEW E 67, 036604 ~2003!
Appendix A!. This velocity field corresponds to a vortex wit
a nonzero circulation and a solid rotation core. Such velo
fields were obtained experimentally in water, to study
interaction of the vortex with surface waves@37#. In aeroa-
coustics, experimental vortices have smooth velocity profi
@32,33# and the solid core vortex is a very poor approxim
tion. In order to get closer to the experimental situation,
study polynomial velocity profiles:

U~r !5(
i 51

i max

g i S r

Lm
D i

, r<Lm , ~70!

U~r !5
G

2pr
, r>Lm , ~71!

G being the circulation of the mean flow,

G52p Lm(
i 51

i max

gp . ~72!

The mean-flow vorticityV confined inside the circler
5Lm , has also a polynomial form

V5
2g1

Lm
1 (

i 52

i max21 ~ i 12!

Lm
g i S r

Lm
D i

, r<Lm . ~73!

Then, choosing theg i , we can modelize a scattering pro
lem by an axisymmetric vortex, including zero or nonze
circulation.

The outer solution remains the same, Eq.~14!, whereas
the inner solution~17! is expanded in series

Fn
in~r !5 (

p50

`

kp
nS r

Lm
D p

. ~74!

FIG. 1. Error parameterz @see definition in Eq.~69!# vs b for
the two flowsU1 @Eq. ~48!# andU2 @Eq. ~50!#.
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We show in Appendix C

kp
n50 for p,unu,

kn
unu51 for p5unu, ~75!

kp
n5F~g1 , . . . ,g i max

,Lm ,k! for p.unu.

The analytical expression of the functionF is related to the
mean-flow structure. The complete expression of thekp

n de-
pends on the mean-flow structure~70! and can be obtained
for a givenU, by identifying order by order in (r /Lm) terms
of Eq. ~16!. We then get a recurrence relation between
kp

n .
As Lm5Li , bn[0 andcn[0. Then, using Eqs.~20!, we

can express the sound wave from Eqs.~21! and ~23!.

1. Number of terms in series

For computational reasons, we realize the partial-wa
summation on a finite number of terms, namely, 2nmax11
terms (2nmax<n<nmax). The series in Eqs.~9! and ~74!
are simply convergent, so that the largerb and k r are, the
biggernmax must be.

The value ofnmax has been discussed in scattering pro
lems of electromagnetic waves by spherical conducting p
ticles ~Mie scattering! ~see Ref.@53#, Sec. 13.5!. These prob-
lems, involving summations of spherical Bessel functio
are similar to our aeroacoustic one. From the analysis of
convergence behavior of the series and numerical comp
tions of the series terms, Wiscombe@54# suggested a crite
rion for nmax:

nmax5x14x1/312, ~76!

where in our case,x5b for scattering amplitude computa
tions @e.g., Eq.~31!# andx5max(b,kr) for sound field com-
putations@e.g., Eq.~23!#. From our numerical computations
the above choice ofnmax leads to a very good estimate of th
sound quantities.

Also for computational reasons, we will denotepmax the
number of terms in the series expansion~74! ~for each fixed
moden, unu<p<unu1pmax). Of course, the largerb and the
polynomials’ order~70! are, the larger the number of term
that should be kept in the series~74!. We were not able to
find a criterion analogous to Eq.~76! to quantifypmax. From
our computations with largenmax, we find that pmax
52nmax works fine.

2. A zero-circulation vortical flow

We consider in this section the scattering by a vorti
flow with no circulation. This type of flow without circula
tion has a great theoretical interest: it is possible to perfo
the analysis with usual sound scattering methods becaus
spurious divergencies appear in the scattered quant
@19,20#. Moreover, this type of mean flow has a great impo
tance in experimental situations such as von Ka´rmán street
@55–57# or normal modes of surface waves@47#.
4-9
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R. BERTHET AND C. COSTE PHYSICAL REVIEW E67, 036604 ~2003!
We analyze the scattered sound wave from the ze
circulation mean flow~50!. From Eqs.~21!–~23!, we can
compute the total sound fieldrs , its scattered partrscatt,
and the scattering amplitudef (u). We can then compare th
results from the PW method with results from the first Bo
approximation@19#. As said before, the Born approximatio
is valid if the flow satisfiesMb5M2pLm /l!1, whereas
the PW method requiresb@1. We also use a direct numer
cal simulation~DNS! of the sound–mean-flow interactio
@58,59# to analyze the scattering behavior. This DNS allo

FIG. 2. Scattering amplitudesu f u, resulting from the interaction
of a plane sound wave (l/L* 50.5) with the mean flowU2 @Eq.
~50!# with M.0.1, with respect to the scattering angleu ~in de-
grees!, partial-wave computations; o, direct numerical simulatio
2, first Born approximation.

FIG. 3. Scattering amplitudesu f u, resulting from the interaction
of a plane sound wave (l/L* 51) with the mean flowU2 @Eq. ~50!#
with M.0.1, with respect to the scattering angleu ~in degrees!. *,
partial-wave computations; o, direct numerical simulation;2, first
Born approximation.
03660
o-
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us to study the interaction for a large range ofl/L* ratios,
whereL* is the vortex core radius~location of the velocity
maximum!.

We present in Figs. 2–5 the scattering amplitudef for the
mean flow ~50! (M.0.1, largest velocity for L*
50.01 m), computed from the three methods, for differe
l/L* ratios. The agreement is good between the DNS
one of the two theoretical methods, without any free para
eters. As expected, the Born approximation falls down
l/L* <2.5 (Mb>0.5), whereas the PW computations a
valid for l/L* <1 (b>12).

FIG. 4. Scattering amplitudesu f u, resulting from the interaction
of a plane sound wave (l/L* 52.5) with the mean flowU2 @Eq.
~50!# with M.0.1, with respect to the scattering angleu ~in de-
grees!. *, partial-wave computations; o, direct numerical simul
tion; 2, first Born approximation.

FIG. 5. Scattering amplitudesu f u, resulting from the interaction
of a plane sound wave (l/L* 55) with the mean flowU2 @Eq. ~50!#
with M.0.1, with respect to the scattering angleu ~in degrees!. *,
partial-wave computations; o, direct numerical simulation;2, first
Born approximation.
4-10
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FIG. 6. Sound field resulting from the interaction of an incident plane monochromatic sound wave~propagating from the left to the righ
of the domain,l/L* 51) with the mean flowU2 @Eq. ~50!#, M.0.1. b.12. Left-upper, sound wavers from the partial-wave computa
tions; right-upper, sound wavers from the direct numerical simulation. Left-lower, scattered sound waverscat from the partial-wave
computations; right-lower, scattered sound waverscat from the direct numerical simulation. Circles locate the position of the two oppo
sign vorticity domains. Units are in meters on each axis.
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We have also computed the total sound fieldrs and its
scattered part@60# rscat with the PW method and the DNS
We use a square domain of size 20L* 320L* . The fluid
parameters are those of air under normal conditions.
incident plane wave propagates from the left to the right
the domain and we takers052.6331025 m3 kg21'2.6
31025rair to ensure linear sound waves. Results are p
sented in Fig. 6 forl/L* 51 (b.12) and on Fig. 7 for
l/L* 51/2 (b.25) where the PW method is valid. Th
agreement is also rather good between the two meth
without any free parameters.

In this range of wavelengths, the scattering process
more efficient as the wavelength decreases. Moreover,
wave front perturbation, present just after the sound-vor
crossing, decreases as the sound wave goes away from
vortex core. This observation is consistent with the phys
situation: as no topological default is present, this pertur
tion disappears at large distances from the vortex, and is
to be confused with the real dislocation observed when
vortical flow has a finite circulation.
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3. A finite circulation vortical flow

This type of flow was extensively studied in experimen
situations with surface waves and sound waves. A solid
tation core well modelizes some experimental configurati
@31,37# but a more general velocity profile is needed to ta
into account general experimental setups@32,33#. These kind
of vortices have also a theoretical importance: they crea
dislocation of the wave front, and it is possible to investiga
in detail the phase-shift process and to perform in a qua
tative way the Berry’s analogy@33,34,38#.

The simplest polynomial expansion~70!, which gives a
continuous vorticity, decreasing to 0 with a zero slope ar
5Lm , is U3, with

U3~r !5
v3 r

2 S 12
3r 2

2Lm
2

1
4r 3

5Lm
3 D , r<Lm,

~77!

U3~r !5
G3

2pr
, r>Lm ,
4-11
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FIG. 7. Sound field resulting from the interaction of an incident plane monochromatic sound wave~propagating from the left to the righ
of the domain,l/L* 50.5) with the mean flowU2 @Eq. ~50!#, M.0.1. b.25. Left-upper, sound wavers from partial-wave computations
right-upper, sound wavers from direct numerical simulation. Left-lower,xs scattered sound waverscat from the partial-wave computations
right-lower, scattered sound waverscat from the direct numerical simulation. Circles locate the position of the two opposite sign vor
domains. Units are in meters on each axis.
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U3 is maximum atr 5L* .0.64Lm . The circulation isG3

53p v3 Lm
2 /10, ensuring continuity of the velocity atr

5Lm . The vorticityV3 reads

V3~r !5v3S 12
3r 2

Lm
2

1
2r 3

Lm
3 D , r<Lm,

~78!
V3~r !50, r>Lm .

This velocity field is a solution of the ideal fluid equation
and is smooth enough to mimic experimental profiles. T
detailed calculations of the inner solution~74! are given in
Appendix C.

We present results from the interaction of a plane so
wave with the mean flow~77! (M.3.931022, largest ve-
locity for L* 50.01 m) for l/L* .1 (b.9.8, Fig. 8!,
l/L* .3/4 (b.13.1, Fig. 9, left side!, and l/L* .0.625
(b.15.8, Fig. 9, right side!. Computations were performe
with a domain of size 0.4 m30.4 m (.26Lm) and the inci-
dent sound wave propagates from the left to the right of
domain. In each case, the fluid parameters are those o
03660
e
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e
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under normal conditions, and we tookrs052.631025rair to
ensure linear sound waves. Again the agreement between
PW method and the DNS is rather satisfactory~Fig. 8!.

For these choices ofl/L* ratios, the scattering is mor
efficient as the wavelength decreases. Moreover, we can
serve a dislocation after the sound-vortex interaction, wh
seems to be of constant amplitude~compare to the zero cir
culation case shown in Figs. 6 and 7!. This dislocation, with
amplitude and orientation depending on the parame
a—that is the intensity of the mean flow and the orientati
of the vortex rotation with regard to the incident wave dire
tion of propagation—is the signature of the Aharonov-Boh
effect. These results are very similar to the results of Vivan
et al. @37# computed for surface waves scattered by a vor
in solid rotation. This is obvious, since the dislocation d
pends on the vortex circulation only, which quantifies t
topological defect in the velocity field, and not on the co
structure.

Another prominent feature of the interaction of a sou
wave and a vortex with circulation is the dissymmetry of t
scattered wave~compare Figs. 6 and 7 with Figs. 8 and 9!. It
4-12
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FIG. 8. Sound wavers resulting from the interaction of an incident plane monochromatic sound wave~propagating from the left to the
right of the domain,l/L* 51) with the mean flowU3 @Eq. ~77!#, M.0.039. b.9.8. Left, partial-wave computations; right, dire
numerical simulation. Circle locates the position of the vortex core~rotating counterclockwise!. Units are in meters on each axis.
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is crucial, in order to exhibit this property that is observ
experimentally@37,47#, to calculate the sound field inside th
vortex core.

Following previous works@28,31,33,34,37#, we want to
emphasize here the importance of fluid dynamics exp
ments ~acoustic or surface waves! for the study of the
Aharonov-Bohm effect: we are able to analyze both the a
plitude and phase of the wave@38#. The PW computations
give access to the full structure of the complex sound fi
@see Eqs.~21!–~23!#. Thus, writing

rs5ursue22ipnteif, ~79!

we can easily extract the amplitudeursu and the phase shiftf
of the wave with respect to the incident wave.

Figure 10 shows cross sections of the amplitudeursu for
x50.19 m for differentl/L* ratios. We also present in Fig
11 cross sections of the phase shiftf for x50.19 m for
different l/L* ratios. Far from they50 plane, the sound
wave is undisturbed by the mean flow: the phase is alm
03660
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d

st

constant and the sound amplitude is equal to 1. It means
scattering effects are very small in these regions. The an
sis of the amplitude behavior in these regions does not g
informations about the sound wave propagation through
vortex flow. Nevertheless, the sound-vortex interaction c
be detected by measuring the phase jumpDf from one side
to the other. Following Ref.@34#, this phase jump can be
expressed as

Df5
2pG

l c0
. ~80!

PlottingDf with respect to 1/l gives informations about the
flow: we can get the flow circulationG from the curve slope
~Fig. 12!. Practically, from the cross sections of the phase
is not easy to defineDf because interference patterns b
tween the incident wave, the dislocated wave, and the s
tered wave are superimposed on the dislocation pattern
ducing the phase jump. We decided to defineDf between
FIG. 9. Sound wavers resulting from the interaction of an incident plane monochromatic sound wave~propagating from the left to the
right of the domain! with the mean flowU3 @Eq. ~77!#, M.0.039. Partial-wave computations with left,l/L* 53/4, b.13.1; right,
l/L* 50.625,b.15.8. Circle locates the position of the vortex core~rotating counterclockwise!. Units are in meters on each axis.
4-13
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the minimum and the maximum values of the phase s
~see Fig. 11!, which is obviously an overestimate. In so d
ing, we getG.1.26 m2 s21, to be compared with the chose
value from the mean-flow~77! properties (M.3.931022,
largest velocity forL* 50.01 m): G im.1.16 m2 s21. The
above choice for the phase jump amplitude gives a g
value of the vortical-flow circulation.

V. CONCLUSION

We have described a semianalytical method to ana
sound–vortical-flow-interactions in two-dimensional cas
This method is based on a partial-wave expansion~an angu-
lar Fourier transform! of a modified wave equation and
valid in the short wavelength limit for small Mach numb
flows. It is more powerful than ray-tracing methods beca
it gives, without extra computations, the sound wave am
tude and phase in the whole interaction domain, and bec
it is less restrictive on the smallness of the wavelength

FIG. 10. Cross sections, forx50.19 m, of the amplitudeursu,
for different l/L* ratios.

FIG. 11. Cross sections, forx50.19 m, of the phase shiftf ~in
degrees!, for differentl/L* ratios.
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also gives a better description than Born approximation
cause we are not restricted to the scattered part of the w
~the far field!, and because vortical flows with finite circula
tion are amenable to our analysis.

We analyzed in detail the range of validity of our metho
the method is valid for (2pL/l)>12–15. Moreover, we
showed that in this short wavelength limit, the partial wa
method preserves the acoustical energy conservation.
also gave some examples of sound scattering by vort
flows and we analyzed the behavior of the sound fields.
extend previous calculations to the case of smooth vorti
profiles that are essential to take into account actual exp
mental aeroacoustics problems.

Although approximate, our method is essentially nonp
turbative and allows a satisfactory description of wave fro
dislocation by a finite circulation vortex, which correspon
to a topologically singular velocity field. Zero-circulatio
vortices are not topological defects, and the wave front p
turbation that appears near the vortex core decreases ra
with dicreasing distance.

Those sound–mean-flow interaction problems are f
mally close to quantum scattering problems. The most
portant change is that sound waves always penetrate into
vortical flow. A nontrivial physical consequence is the gre
dissymmetry of the scattering pattern with finite circulati
vortices. A large number of papers in quantum mechan
deal with scattering by various potentials, but only a few
them take into account the internal structure of the scatter

A generalization of our method to more complicated flo
~e.g., involving more than one vortex, three-dimensio
problems! seems to be an hard task and remains a open p
lem in order to analyze multiple scattering events in the
flows. One way of solving the problem of two vortices cou
be to introduce elliptic coordinates and Mathieu functio
@61#.
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APPENDIX A: SOUND SCATTERING BY A SOLID
ROTATION VORTEX

Let us consider the vortical flow produced by a vort
with a core in solid rotation:

U~r !5v0r /2, r<Lm , ~A1!

U~r !5
G

2pr
, r>Lm ,

with G5pv0 Lm
2 in order to ensure continuity of the veloc

ity. This vortical flow was considered by Coste and c
workers in surface wave scattering by vortex flows@28,37#
and also by Rouxet al. @31# to analyze the acoustica
Aharonov-Bohm effect.

The outer solution is given by Eq.~14! whereas the inne
solution ~17! can be expressed in terms of the Bessel fu
tion J:

Fn
in~r !5Junu~knr ! ~A2!

with

kn5k2
nv0

2c0
~A3!

We have kept the only solution that is finite atr 50.
If 2c0k/v0 is an integern0 , kn vanishes forn5n0. In this

special case, the inner solution can be found by assum
Fn0

in (r )}r p. This leads top56n0 and we choose the solu

tion p5n0 to get a bounded solution at the origin:

Fn0

in ~r !5r n0. ~A4!

As Li5Lm , bn[0 andcn[0. The complete solution can b
achieved by solving the system~20!.

APPENDIX B: BORN APPROXIMATION

Starting from the basic equations~3! and ~4! describing
the interaction of a sound wave~sound pulsation 2pn) with
a two-dimensional stationary mean flow, one can derive
the Born approximation, a formal expression for the sc
tered amplitude~26! @19#:

f ~u!5
1

2c0
Ai2

c0
cos~u!cot~u/2!Ṽz~kWR2kW i ! ~B1!

with kW i52pn0 /c0 ı̂ the wave vector of the incident plan
wave that propagates in direction of the unit vectorı̂ , kWR

52pn/c0 R̂ is the wave vector in the direction of observ
tion R̂, and

Ṽ~qW !5
1

~2p!2E VW ~rW ! e2 iqW •rW d2rW ~B2!

is the spatial Fourier transform of the vorticity field. Th
expression allows to use sound as a probe of turbulent fl
@20,62,63#.
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In the forward directionu.0, one can easily see thatf
diverges for a nonzero-circulation mean flow. This is a we
known behavior in the Born approximation@30,46#. This
traces back to the fact that the physical effect of a nonz
circulation is the dislocation of the incident wave front.
the forward direction, the incident wave undergoes a mo
fication of the same amplitude as itself. This is a nonper
bative effect, inaccessible to a perturbative approach suc
the Born expansion.

For axisymmetric flows in two dimensions, taking@Oz)
as the symmetry axis,V5V(r ) ẑ in cylindrical coordinates
and the Fourier transform~B2! reduces to

Ṽ~qW !52pE
0

`

V~r ! J0~qr !rdr . ~B3!

APPENDIX C: COMPUTATION OF THE INNER
SOLUTION SERIES

We must solve Eq.~16!,

rn91
rn8

r
1Fk22

2n k

c0 r (
i 51

i max

g i S r

Lm
D i

2
n2

r 2Grn50. ~C1!

For each value ofn, we introduce the indexp0>0 of the first
nonzero term of Eq.~74!:

rn5 (
p5p0

`

kp
nS r

Lm
D p

. ~C2!

Injecting this in Eq.~C1!, we then determine the constan
kp

n with the requirement that the coefficient of each power
r /Lm be zero.

When r→0, the leading order term is (r /Lm)p022, with
the coefficient (p0

22n2)kp0

n /Lm
2 . We thus get the general re

sult

kp0

n 50 for p0Þunu

or

kp0

n Þ0 for p05unu ~C3!

Thus, for a given modern , the series expansion starts atp
5p05unu. We take the positive value ofp0 in order to get a
finite acoustical field atr 50. In this general calculation, we
recover the asymptotic behavior near the origin of the a
lytical solutions~55!, ~62!, and~A2!. In this respect, the ve
locity fields ~48!, ~50!, and~A1! are only special cases of th
polynomial ones considered in this appendix.

The coefficientskp
n for p.unu are then calculated by re

currence. The general expression, for the velocity field~70!,
is too cumbersome and can be expressed as

kp
n50 for p,unu,

kn
unu51 for p5unu ~C4!

kp
n5F~g1 , . . . ,g i max

,Lm ,k! for p.unu.
4-15
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The analytical expression of the functionF depends on the
mean-flow structure.

We will now focus on the particular case~77!. A straight-
forward calculation gives the recurrence relations for the
efficientskp

n . The particular cases are

kp
n50 ~p,unu!,

k unu
n Þ0,

k unu11
n 50,

4~ unu11!

Lm
2

k unu12
n 1S k22

nkv3

c0
Dk unu

n 50 ~C5!

k unu13
n 50,

8~ unu12!

Lm
2

k unu14
n 1S k22

nkv3

c0
Dk unu12

n 1
3

2

nkv3

c0
k unu

n 50,

5~2unu15!

Lm
2

k unu15
n 2

4

5

nkv3

c0
k unu

n 50,
Th

.

, J

e

03660
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whereas the general term, forp.5, is given by

p~2unu1p!

Lm
2

k unu1p
n 1S k22

nkv3

c0
Dk unu1p22

n

1
nkv3

c0
S 3

2
k unu1p24

n 2
4

5
k unu1p25

n D50. ~C6!

Obviously, all kp
n are proportional tok unu

n , which is not
specified in this calculation. According to the general so
tion ~17!, we write k unu

n [1, with the proportionnality con-
stant now denoted byan .

Even in this simple case, we are unable to get an exp
expression for the functionF of Eq. ~75!. However, the sys-
tem ~C5! with ~C6!, together with the symbolic computatio
capabilities ofMATHEMATICA are sufficient to calculatern
defined in Eq.~C2! up to any desirable order. In the particu
lar cases of the velocity potentials~48!, ~50!, and~A1!, it is
a straightforward exercise to verify that Eq.~C5! and ~C6!
give the well-known series expansions of the analytic so
tions ~55!, ~62!, and~A2!.
.
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